Winter School in Abstract Analysis, section Set Theory

ABOUT THE REAPING NUMBER OF DENSE SUBSETS OF THE RATIONALS

Jonathan Cancino-Manríquez UNAM-UMSNH, Morelia, México jcancino@matmor.unam.mx

J. Cancino-Manríquez ()

DENSE SUBSETS OF THE RATIONALS

January, 2015 1 / 14

Combinatorics of dense subsets of the rationals, B. Balcar, M. Hrušák and F.Hernández-Hernández

- The main object of study of this paper is the partial order (Dense(Q), ⊆_{nwd}).
- Among other intersting results, they formulate cardinal invariants analogous to the ones that appear in Van Dowen's Diagram, and prove several relations between them.

$$\mathfrak{p}_\mathbb{Q} \leq \mathfrak{t}_\mathbb{Q} \leq \mathfrak{h}_\mathbb{Q} \leq \mathfrak{s}_\mathbb{Q} \leq \mathfrak{r}_\mathbb{Q} \leq \mathfrak{i}_\mathbb{Q}$$

• In some cases, these cardinal invariants coincide with the corresponding version in Van Dowen's Diagram.

$$\mathfrak{p}_{\mathbb{Q}} = \mathfrak{p}, \ \mathfrak{t}_{\mathbb{Q}} = \mathfrak{t}, \ \mathfrak{i}_{\mathbb{Q}} = \mathfrak{i}.$$

Combinatorics of dense subsets of the rationals, B. Balcar, M. Hrušák and F.Hernández-Hernández

- The main object of study of this paper is the partial order (Dense(Q), ⊆_{nwd}).
- Among other intersting results, they formulate cardinal invariants analogous to the ones that appear in Van Dowen's Diagram, and prove several relations between them.

$$\mathfrak{p}_\mathbb{Q} \leq \mathfrak{t}_\mathbb{Q} \leq \mathfrak{h}_\mathbb{Q} \leq \mathfrak{s}_\mathbb{Q} \leq \mathfrak{r}_\mathbb{Q} \leq \mathfrak{i}_\mathbb{Q}$$

• In some cases, these cardinal invariants coincide with the corresponding version in Van Dowen's Diagram.

$$\mathfrak{p}_{\mathbb{Q}} = \mathfrak{p}, \ \mathfrak{t}_{\mathbb{Q}} = \mathfrak{t}, \ \mathfrak{i}_{\mathbb{Q}} = \mathfrak{i}.$$

Combinatorics of dense subsets of the rationals, B. Balcar, M. Hrušák and F.Hernández-Hernández

- The main object of study of this paper is the partial order (Dense(Q), ⊆_{nwd}).
- Among other intersting results, they formulate cardinal invariants analogous to the ones that appear in Van Dowen's Diagram, and prove several relations between them.

$$\mathfrak{p}_\mathbb{Q} \leq \mathfrak{t}_\mathbb{Q} \leq \mathfrak{h}_\mathbb{Q} \leq \mathfrak{s}_\mathbb{Q} \leq \mathfrak{r}_\mathbb{Q} \leq \mathfrak{i}_\mathbb{Q}$$

• In some cases, these cardinal invariants coincide with the corresponding version in Van Dowen's Diagram.

$$\mathfrak{p}_{\mathbb{Q}} = \mathfrak{p}, \ \mathfrak{t}_{\mathbb{Q}} = \mathfrak{t}, \ \mathfrak{i}_{\mathbb{Q}} = \mathfrak{i}.$$

Definition

A family $\mathcal{R} \subseteq Dense(\mathbb{Q})$ is a *dense*-reaping family provided that for any $X \in Dense(\mathbb{Q})$, there is $Y \in \mathcal{R}$ such that $Y \setminus X \notin Dense(\mathbb{Q})$ or $X \cap Y \notin Dense(\mathbb{Q})$.

Definition

The dense-reaping number $\mathfrak{r}_{\mathbb{Q}}$ is defined as the minimum cardinality of a dense-reaping family, i.e.,

 $\mathfrak{r}_{\mathbb{Q}}=\mathsf{min}\{|\mathcal{R}|:\mathcal{R} ext{ is dense}- ext{reaping}\}$

Definition

A family $\mathcal{R} \subseteq Dense(\mathbb{Q})$ is a *dense*-reaping family provided that for any $X \in Dense(\mathbb{Q})$, there is $Y \in \mathcal{R}$ such that $Y \setminus X \notin Dense(\mathbb{Q})$ or $X \cap Y \notin Dense(\mathbb{Q})$.

Definition

The dense-reaping number $\mathfrak{r}_{\mathbb{Q}}$ is defined as the minimum cardinality of a dense-reaping family, i.e.,

 $\mathfrak{r}_{\mathbb{Q}} = \min\{|\mathcal{R}| : \mathcal{R} \text{ is dense} - reaping\}$

The following holds:

- $\mathfrak{r}_{\mathbb{Q}} = \mathfrak{r}(\mathcal{P}(\mathbb{Q})/\mathsf{nwd}).$
- $\max{\lbrace \mathfrak{r}, cof(\mathcal{M}) \rbrace \leq \mathfrak{r}_{\mathbb{Q}} \leq \mathfrak{i}.}$

Corollary(Balcar, Hrušák, Hernández-Hernández).

The following holds:

•
$$\mathfrak{r}_{\mathbb{Q}} = \mathfrak{r}(\mathcal{P}(\mathbb{Q})/\mathsf{nwd}).$$

• $\max{\mathfrak{r}, cof(\mathcal{M})} \leq \mathfrak{r}_{\mathbb{Q}} \leq \mathfrak{i}.$

Corollary(Balcar, Hrušák, Hernández-Hernández).

The following holds:

•
$$\mathfrak{r}_{\mathbb{Q}} = \mathfrak{r}(\mathcal{P}(\mathbb{Q})/\mathsf{nwd}).$$

• $\max{\mathfrak{r}, cof(\mathcal{M})} \leq \mathfrak{r}_{\mathbb{Q}} \leq \mathfrak{i}.$

Corollary(Balcar, Hrušák, Hernández-Hernández).

The following holds:

•
$$\mathfrak{r}_{\mathbb{Q}} = \mathfrak{r}(\mathcal{P}(\mathbb{Q})/\mathsf{nwd}).$$

• $\max{\mathfrak{r}, cof(\mathcal{M})} \leq \mathfrak{r}_{\mathbb{Q}} \leq \mathfrak{i}.$

Corollary(Balcar, Hrušák, Hernández-Hernández).

- Does $\mathcal{P}(\mathbb{Q})/nwd$ collapse \mathfrak{c} to $\mathfrak{h}_{\mathbb{Q}}$? Yes (D. Carolina Montoya, J. Brendle)
- Are the following relatively consistent with ZFC?:
 - $\blacktriangleright \ \mathfrak{h} < \mathfrak{h}_{\mathbb{Q}} \ \ \text{Yes (Brendle)}.$
 - $\blacktriangleright \ \mathfrak{s} < \mathfrak{s}_{\mathbb{Q}} \ \ \text{Yes (Brendle)}.$
 - $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{s}$ Yes (Brendle).
 - $\mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\max{cof(\mathcal{M}), \mathfrak{r}} < \mathfrak{r}_{\mathbb{Q}}.$
 - $\blacktriangleright \ \mathfrak{r}_{\mathbb{Q}} < \mathfrak{i}.$

► < Ξ ►</p>

- Does $\mathcal{P}(\mathbb{Q})/nwd$ collapse \mathfrak{c} to $\mathfrak{h}_{\mathbb{Q}}?\;$ Yes (D. Carolina Montoya, J. Brendle)
- Are the following relatively consistent with ZFC?:
 - $\blacktriangleright \ \mathfrak{h} < \mathfrak{h}_{\mathbb{Q}} \ \ \text{Yes (Brendle)}.$
 - $\blacktriangleright \ \mathfrak{s} < \mathfrak{s}_{\mathbb{Q}} \ \ \text{Yes (Brendle)}.$
 - $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{s}$ Yes (Brendle).
 - $\mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\max{cof(\mathcal{M}), \mathfrak{r}} < \mathfrak{r}_{\mathbb{Q}}.$
 - $\blacktriangleright \ \mathfrak{r}_{\mathbb{Q}} < \mathfrak{i}.$

→ < Ξ →</p>

- Does $\mathcal{P}(\mathbb{Q})/nwd$ collapse \mathfrak{c} to $\mathfrak{h}_{\mathbb{Q}}?\;$ Yes (D. Carolina Montoya, J. Brendle)
- Are the following relatively consistent with ZFC?:
 - $\mathfrak{h} < \mathfrak{h}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{s}$ Yes (Brendle).
 - $\mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\max{cof(\mathcal{M}), \mathfrak{r}} < \mathfrak{r}_{\mathbb{Q}}.$
 - $\blacktriangleright \ \mathfrak{r}_{\mathbb{Q}} < \mathfrak{i}.$

• • = • • = •

- Does $\mathcal{P}(\mathbb{Q})/nwd$ collapse \mathfrak{c} to $\mathfrak{h}_{\mathbb{Q}}?\;$ Yes (D. Carolina Montoya, J. Brendle)
- Are the following relatively consistent with ZFC?:
 - $\mathfrak{h} < \mathfrak{h}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{s}$ Yes (Brendle).
 - $\blacktriangleright \ \mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}} \ \ \text{Yes (Brendle)}.$
 - $\max{cof(\mathcal{M}), \mathfrak{r}} < \mathfrak{r}_{\mathbb{Q}}.$
 - $\blacktriangleright \ \mathfrak{r}_{\mathbb{Q}} < \mathfrak{i}.$

- Does $\mathcal{P}(\mathbb{Q})/nwd$ collapse \mathfrak{c} to $\mathfrak{h}_{\mathbb{Q}}?\;$ Yes (D. Carolina Montoya, J. Brendle)
- Are the following relatively consistent with ZFC?:
 - $\mathfrak{h} < \mathfrak{h}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{s}$ Yes (Brendle).
 - $\mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\max{cof(\mathcal{M}), \mathfrak{r}} < \mathfrak{r}_{\mathbb{Q}}.$
 - $\blacktriangleright \ \mathfrak{r}_{\mathbb{Q}} < \mathfrak{i}.$

- Does $\mathcal{P}(\mathbb{Q})/nwd$ collapse \mathfrak{c} to $\mathfrak{h}_{\mathbb{Q}}?\;$ Yes (D. Carolina Montoya, J. Brendle)
- Are the following relatively consistent with ZFC?:
 - $\mathfrak{h} < \mathfrak{h}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{s}$ Yes (Brendle).
 - $\mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\max{cof(\mathcal{M}), \mathfrak{r}} < \mathfrak{r}_{\mathbb{Q}}.$
 - $\blacktriangleright \ \mathfrak{r}_{\mathbb{Q}} < \mathfrak{i}.$

- Does $\mathcal{P}(\mathbb{Q})/nwd$ collapse \mathfrak{c} to $\mathfrak{h}_{\mathbb{Q}}?\;$ Yes (D. Carolina Montoya, J. Brendle)
- Are the following relatively consistent with ZFC?:
 - $\mathfrak{h} < \mathfrak{h}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{s}$ Yes (Brendle).
 - $\mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - max{cof(\mathcal{M}), \mathfrak{r} } < $\mathfrak{r}_{\mathbb{Q}}$.
 - $\blacktriangleright \ \mathfrak{r}_{\mathbb{Q}} < \mathfrak{i}.$

- Does $\mathcal{P}(\mathbb{Q})/nwd$ collapse \mathfrak{c} to $\mathfrak{h}_{\mathbb{Q}}?\;$ Yes (D. Carolina Montoya, J. Brendle)
- Are the following relatively consistent with ZFC?:
 - $\mathfrak{h} < \mathfrak{h}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{s}$ Yes (Brendle).
 - $\mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\max{cof(\mathcal{M}), \mathfrak{r}} < \mathfrak{r}_{\mathbb{Q}}.$
 - $\blacktriangleright \ \mathfrak{r}_{\mathbb{Q}} < \mathfrak{i}.$

- Does $\mathcal{P}(\mathbb{Q})/nwd$ collapse \mathfrak{c} to $\mathfrak{h}_{\mathbb{Q}}?\;$ Yes (D. Carolina Montoya, J. Brendle)
- Are the following relatively consistent with ZFC?:
 - $\mathfrak{h} < \mathfrak{h}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{s}$ Yes (Brendle).
 - $\mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\max{cof(\mathcal{M}), \mathfrak{r}} < \mathfrak{r}_{\mathbb{Q}}.$
 - ▶ $\mathfrak{r}_{\mathbb{Q}} < \mathfrak{i}$.

- Does $\mathcal{P}(\mathbb{Q})/nwd$ collapse \mathfrak{c} to $\mathfrak{h}_{\mathbb{Q}}?\;$ Yes (D. Carolina Montoya, J. Brendle)
- Are the following relatively consistent with ZFC?:
 - $\mathfrak{h} < \mathfrak{h}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{s}$ Yes (Brendle).
 - $\mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\max{cof(\mathcal{M}), \mathfrak{r}} < \mathfrak{r}_{\mathbb{Q}}.$
 - $\blacktriangleright \ \mathfrak{r}_{\mathbb{Q}} < \mathfrak{i}.$

- Does $\mathcal{P}(\mathbb{Q})/nwd$ collapse \mathfrak{c} to $\mathfrak{h}_{\mathbb{Q}}?\;$ Yes (D. Carolina Montoya, J. Brendle)
- Are the following relatively consistent with ZFC?:
 - $\mathfrak{h} < \mathfrak{h}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{s}$ Yes (Brendle).
 - $\mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\max{cof(\mathcal{M}), \mathfrak{r}} < \mathfrak{r}_{\mathbb{Q}}.$

► $\mathfrak{r}_{\mathbb{Q}} < \mathfrak{i}$.

- Does $\mathcal{P}(\mathbb{Q})/nwd$ collapse \mathfrak{c} to $\mathfrak{h}_{\mathbb{Q}}?\;$ Yes (D. Carolina Montoya, J. Brendle)
- Are the following relatively consistent with ZFC?:
 - $\mathfrak{h} < \mathfrak{h}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{s}$ Yes (Brendle).
 - $\mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}}$ Yes (Brendle).
 - $\max{cof(\mathcal{M}), \mathfrak{r}} < \mathfrak{r}_{\mathbb{Q}}.$
 - $\mathfrak{r}_{\mathbb{Q}} < \mathfrak{i}$.

Main Theorem

The inequality $\mathfrak{r}_\mathbb{Q} < \mathfrak{i}$ is relatively consistent with ZFC

Main Theorem

The inequality $\mathfrak{r}_\mathbb{Q} < \mathfrak{i}$ is relatively consistent with ZFC

There are several forcing notions satisfying the following theorem, but we are using the one in Con(i < u).

Theorem (S. Shelah).

- $\mathcal{Q}_{\mathscr{I}}$ is proper and ω^{ω} -bounding.
- $\mathcal{Q}_{\mathscr{I}}$ adds a set \dot{X} such that for any $Y \in \mathscr{I}^+ \cap V$, $\mathcal{Q}_{\mathscr{I}} \Vdash |\dot{X} \cap Y| = |Y \setminus X| = \omega$.

There are several forcing notions satisfying the following theorem, but we are using the one in Con(i < u).

Theorem (S. Shelah).

- $\mathcal{Q}_{\mathscr{I}}$ is proper and ω^{ω} -bounding.
- $\mathcal{Q}_{\mathscr{I}}$ adds a set \dot{X} such that for any $Y \in \mathscr{I}^+ \cap V$, $\mathcal{Q}_{\mathscr{I}} \models |\dot{X} \cap Y| = |Y \setminus X| = \omega$

There are several forcing notions satisfying the following theorem, but we are using the one in Con(i < u).

Theorem (S. Shelah).

- $\mathcal{Q}_{\mathscr{I}}$ is proper and ω^{ω} -bounding.
- $\mathcal{Q}_{\mathscr{I}}$ adds a set \dot{X} such that for any $Y \in \mathscr{I}^+ \cap V$, $\mathcal{Q}_{\mathscr{I}} \Vdash |\dot{X} \cap Y| = |Y \setminus X| = \omega$.

There are several forcing notions satisfying the following theorem, but we are using the one in Con(i < u).

Theorem (S. Shelah).

- $Q_{\mathscr{I}}$ is proper and ω^{ω} -bounding.
- $\mathcal{Q}_{\mathscr{I}}$ adds a set \dot{X} such that for any $Y \in \mathscr{I}^+ \cap V$, $\mathcal{Q}_{\mathscr{I}} \Vdash |\dot{X} \cap Y| = |Y \setminus X| = \omega$.

There are several forcing notions satisfying the following theorem, but we are using the one in Con(i < u).

Theorem (S. Shelah).

- $Q_{\mathscr{I}}$ is proper and ω^{ω} -bounding.
- $\mathcal{Q}_{\mathscr{I}}$ adds a set \dot{X} such that for any $Y \in \mathscr{I}^+ \cap V$, $\mathcal{Q}_{\mathscr{I}} \Vdash |\dot{X} \cap Y| = |Y \setminus X| = \omega$.

There are several forcing notions satisfying the following theorem, but we are using the one in Con(i < u).

Theorem (S. Shelah).

- $Q_{\mathscr{I}}$ is proper and ω^{ω} -bounding.
- $\mathcal{Q}_{\mathscr{I}}$ adds a set \dot{X} such that for any $Y \in \mathscr{I}^+ \cap V$, $\mathcal{Q}_{\mathscr{I}} \Vdash |\dot{X} \cap Y| = |Y \setminus X| = \omega$.

Lemma.

For every maximal independent family \mathcal{J} , there is a saturated ideal \mathscr{I} such that the forcing $\mathcal{Q}_{\mathscr{I}}$ forces that \mathcal{J} is not longer a maximal independent family.

So making an CSI of length ω_2 of forcings $Q_{\mathscr{I}}$, where every saturated ideal is destroyed (via a bookkeeping device), we get a model where i is big.

We still have to preserve the family $Dense(\mathbb{Q})$ from the ground model as a dense-reaping family. How?

Lemma.

For every maximal independent family \mathcal{J} , there is a saturated ideal \mathscr{I} such that the forcing $\mathcal{Q}_{\mathscr{I}}$ forces that \mathcal{J} is not longer a maximal independent family.

So making an CSI of length ω_2 of forcings $\mathcal{Q}_{\mathscr{I}}$, where every saturated ideal is destroyed (via a bookkeeping device), we get a model where i is big.

We still have to preserve the family $Dense(\mathbb{Q})$ from the ground model as a dense-reaping family. How?

Lemma.

For every maximal independent family \mathcal{J} , there is a saturated ideal \mathscr{I} such that the forcing $\mathcal{Q}_{\mathscr{I}}$ forces that \mathcal{J} is not longer a maximal independent family.

So making an CSI of length ω_2 of forcings $Q_{\mathscr{I}}$, where every saturated ideal is destroyed (via a bookkeeping device), we get a model where i is big.

We still have to preserve the family $Dense(\mathbb{Q})$ from the ground model as a dense-reaping family. How?

Definition.

A filter $\mathcal{U} \subseteq Dense(\mathbb{Q})$ is called *selective* \mathbb{Q} -filter, whenever it is a *p*-filter and a *q*-filter.

A \mathbb{Q} -filter \mathcal{U} is maximal if it is maximal relative to $Dense(\mathbb{Q})$.

Let \mathscr{I} be an ideal on ω . A function $f: \omega \to \omega$ is \mathscr{I} -to-one if the for all $n \in \omega f^{-1}(n) \in \mathscr{I}$.

A filter \mathcal{U} is good for \mathscr{I} if for NO \mathscr{I} -to-one function $f, f^*(\mathscr{I}^*) \cup \mathcal{U}$ generates a filter.

Theorem

Assume \mathscr{I} is a saturated ideal, and let \mathcal{U} be a maximal selective \mathbb{Q} -filter good for \mathscr{I} . Then $\mathcal{Q}_{\mathscr{I}}$ forces that \mathcal{U} generates a maximal selective \mathbb{Q} -filter.

In other words, if $\mathcal{Q}_{\mathscr{I}}$ destroys a maximal selective Q-filter \mathcal{U} , it is because \mathcal{U} is not good for the ideal \mathscr{I} , i.e, there is a function \mathscr{I} -to-one such that $f^*(\mathscr{I}^*) \cup \mathcal{U}$ generates a filter. From here on, whenever an ideal is mentioned, it will be supposed to be a saturated ideal.

(日) (四) (日) (日) (日)

Let \mathscr{I} be an ideal on ω . A function $f: \omega \to \omega$ is \mathscr{I} -to-one if the for all $n \in \omega$ $f^{-1}(n) \in \mathscr{I}$. A filter \mathcal{U} is good for \mathscr{I} if for NO \mathscr{I} -to-one function f, $f^*(\mathscr{I}^*) \cup \mathcal{U}$ generates a filter.

Theorem

Assume \mathscr{I} is a saturated ideal, and let \mathcal{U} be a maximal selective \mathbb{Q} -filter good for \mathscr{I} . Then $\mathcal{Q}_{\mathscr{I}}$ forces that \mathcal{U} generates a maximal selective \mathbb{Q} -filter.

In other words, if $\mathcal{Q}_{\mathscr{I}}$ destroys a maximal selective \mathbb{Q} -filter \mathcal{U} , it is because \mathcal{U} is not good for the ideal \mathscr{I} , i.e, there is a function \mathscr{I} -to-one such that $f^*(\mathscr{I}^*) \cup \mathcal{U}$ generates a filter. From here on, whenever an ideal is mentioned, it will be supposed to be a saturated ideal.

3

10 / 14

Let \mathscr{I} be an ideal on ω . A function $f: \omega \to \omega$ is \mathscr{I} -to-one if the for all $n \in \omega$ $f^{-1}(n) \in \mathscr{I}$. A filter \mathcal{U} is good for \mathscr{I} if for NO \mathscr{I} -to-one function f, $f^*(\mathscr{I}^*) \cup \mathcal{U}$ generates a filter.

Theorem

Assume \mathscr{I} is a saturated ideal, and let \mathcal{U} be a maximal selective \mathbb{Q} -filter good for \mathscr{I} . Then $\mathcal{Q}_{\mathscr{I}}$ forces that \mathcal{U} generates a maximal selective \mathbb{Q} -filter.

In other words, if $\mathcal{Q}_{\mathscr{I}}$ destroys a maximal selective Q-filter \mathcal{U} , it is because \mathcal{U} is not good for the ideal \mathscr{I} , i.e, there is a function \mathscr{I} -to-one such that $f^*(\mathscr{I}^*) \cup \mathcal{U}$ generates a filter. From here on, whenever an ideal is mentioned, it will be supposed to be a saturated ideal.

3

Let \mathscr{I} be an ideal on ω . A function $f : \omega \to \omega$ is \mathscr{I} -to-one if the for all $n \in \omega$ $f^{-1}(n) \in \mathscr{I}$. A filter \mathcal{U} is good for \mathscr{I} if for NO \mathscr{I} -to-one function f, $f^*(\mathscr{I}^*) \cup \mathcal{U}$ generates a filter.

Theorem

Assume \mathscr{I} is a saturated ideal, and let \mathcal{U} be a maximal selective \mathbb{Q} -filter good for \mathscr{I} . Then $\mathcal{Q}_{\mathscr{I}}$ forces that \mathcal{U} generates a maximal selective \mathbb{Q} -filter.

In other words, if $\mathcal{Q}_{\mathscr{I}}$ destroys a maximal selective \mathbb{Q} -filter \mathcal{U} , it is because \mathcal{U} is not good for the ideal \mathscr{I} , i.e, there is a function \mathscr{I} -to-one such that $f^*(\mathscr{I}^*) \cup \mathcal{U}$ generates a filter. From here on, whenever an ideal is mentioned, it will be supposed to be a saturated ideal.

- 3

Let \mathscr{I} be an ideal on ω . A function $f: \omega \to \omega$ is \mathscr{I} -to-one if the for all $n \in \omega$ $f^{-1}(n) \in \mathscr{I}$. A filter \mathcal{U} is good for \mathscr{I} if for NO \mathscr{I} -to-one function f, $f^*(\mathscr{I}^*) \cup \mathcal{U}$ generates a filter.

Theorem

Assume \mathscr{I} is a saturated ideal, and let \mathcal{U} be a maximal selective \mathbb{Q} -filter good for \mathscr{I} . Then $\mathcal{Q}_{\mathscr{I}}$ forces that \mathcal{U} generates a maximal selective \mathbb{Q} -filter.

In other words, if $\mathcal{Q}_{\mathscr{I}}$ destroys a maximal selective Q-filter \mathcal{U} , it is because \mathcal{U} is not good for the ideal \mathscr{I} , i.e, there is a function \mathscr{I} -to-one such that $f^*(\mathscr{I}^*) \cup \mathcal{U}$ generates a filter. From here on, whenever an ideal is mentioned, it will be supposed to be a saturated ideal.

- 4 週 ト - 4 三 ト - 4 三 ト

There is a family ${\mathscr F}$ of maximal selective ${\mathbb Q}\text{-filters}$ such that:

- \mathscr{F} has cardinality ω_2 .
- For every saturated ideal 𝒴, the family
 {𝒴 ∈ 𝒴 : 𝒴 is not good for 𝒴 } is countable. In other words, all but
 countably many filters in 𝒴 are good for 𝒴.
- Moreover, the above property is preserved in forcing extensions preserving ω_1 .

Note that if we start with a model of *GCH*, and \mathscr{F} is the family of the above lemma, then whenever we force with $\mathcal{Q}_{\mathscr{I}}$, there are ω_2 maximal selective \mathbb{Q} -filters from the ground model that survives as maximal selective \mathbb{Q} -filters.

The same is true for finite iterations where the iterands are of the form $\mathcal{Q}_{\mathscr{I}}.$

There is a family ${\mathscr F}$ of maximal selective ${\mathbb Q}\text{-filters}$ such that:

- \mathscr{F} has cardinality ω_2 .
- For every saturated ideal 𝒴, the family
 {𝒴 ∈ 𝒴 : 𝒴 is not good for 𝒴 } is countable. In other words, all but
 countably many filters in 𝒴 are good for 𝒴.
- Moreover, the above property is preserved in forcing extensions preserving ω_1 .

Note that if we start with a model of *GCH*, and \mathscr{F} is the family of the above lemma, then whenever we force with $\mathcal{Q}_{\mathscr{I}}$, there are ω_2 maximal selective \mathbb{Q} -filters from the ground model that survives as maximal selective \mathbb{Q} -filters.

The same is true for finite iterations where the iterands are of the form $\mathcal{Q}_{\mathscr{I}}.$

There is a family ${\mathscr F}$ of maximal selective ${\mathbb Q}\text{-filters}$ such that:

- \mathscr{F} has cardinality ω_2 .
- For every saturated ideal 𝒴, the family
 {𝒴 ∈ 𝒴 : 𝒴 is not good for 𝒴 } is countable. In other words, all but
 countably many filters in 𝒴 are good for 𝒴.
- Moreover, the above property is preserved in forcing extensions preserving ω_1 .

Note that if we start with a model of *GCH*, and \mathscr{F} is the family of the above lemma, then whenever we force with $\mathcal{Q}_{\mathscr{I}}$, there are ω_2 maximal selective \mathbb{Q} -filters from the ground model that survives as maximal selective \mathbb{Q} -filters.

The same is true for finite iterations where the iterands are of the form $\mathcal{Q}_{\mathscr{I}}.$

There is a family ${\mathscr F}$ of maximal selective ${\mathbb Q}\text{-filters}$ such that:

- \mathscr{F} has cardinality ω_2 .
- For every saturated ideal 𝒴, the family
 {𝒴 ∈ 𝒴 : 𝒴 is not good for 𝒴 } is countable. In other words, all but
 countably many filters in 𝒴 are good for 𝒴.
- Moreover, the above property is preserved in forcing extensions preserving ω_1 .

Note that if we start with a model of *GCH*, and \mathscr{F} is the family of the above lemma, then whenever we force with $\mathcal{Q}_{\mathscr{I}}$, there are ω_2 maximal selective \mathbb{Q} -filters from the ground model that survives as maximal selective \mathbb{Q} -filters.

The same is true for finite iterations where the iterands are of the form $\mathcal{Q}_{\mathscr{I}}.$

There is a family ${\mathscr F}$ of maximal selective ${\mathbb Q}\text{-filters}$ such that:

- \mathscr{F} has cardinality ω_2 .
- For every saturated ideal 𝒴, the family
 {𝒴 ∈ 𝒴 : 𝒴 is not good for 𝒴 } is countable. In other words, all but
 countably many filters in 𝒴 are good for 𝒴.
- Moreover, the above property is preserved in forcing extensions preserving ω_1 .

Note that if we start with a model of *GCH*, and \mathscr{F} is the family of the above lemma, then whenever we force with $\mathcal{Q}_{\mathscr{I}}$, there are ω_2 maximal selective \mathbb{Q} -filters from the ground model that survives as maximal selective \mathbb{Q} -filters.

The same is true for finite iterations where the iterands are of the form $\mathcal{Q}_{\mathscr{I}}.$

- 4 回 ト - 4 回 ト

There is a family ${\mathscr F}$ of maximal selective ${\mathbb Q}\text{-filters}$ such that:

- \mathscr{F} has cardinality ω_2 .
- For every saturated ideal 𝒴, the family
 {𝒴 ∈ 𝒴 : 𝒴 is not good for 𝒴 } is countable. In other words, all but
 countably many filters in 𝒴 are good for 𝒴.
- Moreover, the above property is preserved in forcing extensions preserving ω_1 .

Note that if we start with a model of *GCH*, and \mathscr{F} is the family of the above lemma, then whenever we force with $\mathcal{Q}_{\mathscr{I}}$, there are ω_2 maximal selective \mathbb{Q} -filters from the ground model that survives as maximal selective \mathbb{Q} -filters.

The same is true for finite iterations where the iterands are of the form $\mathcal{Q}_{\mathscr{I}}.$

< 回 ト < 三 ト < 三 ト

Lemma.

Let \mathcal{U} be a maximal selective \mathbb{Q} -filter. Let $\mathbb{P}_{\alpha} = \langle \mathbb{P}_{\beta}, \dot{\mathbb{Q}}_{\beta} : \beta < \alpha \rangle$ be a countable support iteration such that for all $\beta < \alpha$, \mathbb{P}_{β} preserves \mathcal{U} and $\mathbb{P}_{\beta} \Vdash \dot{\mathbb{Q}}_{\beta}$ is proper. Then \mathbb{P}_{α} preserves \mathcal{U} as a maximal selective \mathbb{Q} -filter.

You can derived this as a corollary from a more general theorem of Shelah (In Con(i < u), the last lemma).

This together with the previous lemma implies that if \mathbb{P} is a CSI of forcings of the form $\mathcal{Q}_{\mathscr{I}}$, then in every step of the iteration there are ω_2 maximal \mathbb{Q} -filters in \mathscr{F} .

Lemma.

Let \mathcal{U} be a maximal selective \mathbb{Q} -filter. Let $\mathbb{P}_{\alpha} = \langle \mathbb{P}_{\beta}, \dot{\mathbb{Q}}_{\beta} : \beta < \alpha \rangle$ be a countable support iteration such that for all $\beta < \alpha$, \mathbb{P}_{β} preserves \mathcal{U} and $\mathbb{P}_{\beta} \Vdash \dot{\mathbb{Q}}_{\beta}$ is proper. Then \mathbb{P}_{α} preserves \mathcal{U} as a maximal selective \mathbb{Q} -filter.

You can derived this as a corollary from a more general theorem of Shelah (In Con(i < u), the last lemma).

This together with the previous lemma implies that if \mathbb{P} is a CSI of forcings of the form $\mathcal{Q}_{\mathscr{I}}$, then in every step of the iteration there are ω_2 maximal \mathbb{Q} -filters in \mathscr{F} .

Lemma.

Let \mathcal{U} be a maximal selective \mathbb{Q} -filter. Let $\mathbb{P}_{\alpha} = \langle \mathbb{P}_{\beta}, \dot{\mathbb{Q}}_{\beta} : \beta < \alpha \rangle$ be a countable support iteration such that for all $\beta < \alpha$, \mathbb{P}_{β} preserves \mathcal{U} and $\mathbb{P}_{\beta} \Vdash \dot{\mathbb{Q}}_{\beta}$ is proper. Then \mathbb{P}_{α} preserves \mathcal{U} as a maximal selective \mathbb{Q} -filter.

You can derived this as a corollary from a more general theorem of Shelah (In Con(i < u), the last lemma).

This together with the previous lemma implies that if \mathbb{P} is a CSI of forcings of the form $\mathcal{Q}_{\mathscr{I}}$, then in every step of the iteration there are ω_2 maximal \mathbb{Q} -filters in \mathscr{F} .

- Start with a model of GCH and let ${\mathscr F}$ be the family of the above lemma.
- Make a CSI of length ω₂ such that every succesor step of the iteration has the form Q_J.
- This raise up the cardinal invariant i.
- Every step of the iteration destroys at most ω₁ maximal selective Q-filters in the family *F*, so in every step of the iteration there are ω₂ maximal selective Q-filters from the ground model which survive as maximal selective Q-filters.
- This implies that every dense subset of \mathbb{Q} is reaped by some $X \in Dense(\mathbb{Q}) \cap V$, that is, $\mathfrak{r}_{\mathbb{Q}} = \omega_1$.

- Start with a model of GCH and let \mathscr{F} be the family of the above lemma.
- Make a CSI of length ω_2 such that every successor step of the iteration has the form $Q_{\mathscr{I}}$.

• This raise up the cardinal invariant i.

- Every step of the iteration destroys at most ω₁ maximal selective Q-filters in the family *F*, so in every step of the iteration there are ω₂ maximal selective Q-filters from the ground model which survive as maximal selective Q-filters.
- This implies that every dense subset of \mathbb{Q} is reaped by some $X \in Dense(\mathbb{Q}) \cap V$, that is, $\mathfrak{r}_{\mathbb{Q}} = \omega_1$.

- Start with a model of GCH and let \mathscr{F} be the family of the above lemma.
- Make a CSI of length ω_2 such that every successor step of the iteration has the form $Q_{\mathscr{I}}$.
- This raise up the cardinal invariant i.
- Every step of the iteration destroys at most ω₁ maximal selective Q-filters in the family *F*, so in every step of the iteration there are ω₂ maximal selective Q-filters from the ground model which survive as maximal selective Q-filters.
- This implies that every dense subset of \mathbb{Q} is reaped by some $X \in Dense(\mathbb{Q}) \cap V$, that is, $\mathfrak{r}_{\mathbb{Q}} = \omega_1$.

- Start with a model of GCH and let \mathscr{F} be the family of the above lemma.
- Make a CSI of length ω₂ such that every succesor step of the iteration has the form Q_J.
- This raise up the cardinal invariant i.
- Every step of the iteration destroys at most ω₁ maximal selective Q-filters in the family *F*, so in every step of the iteration there are ω₂ maximal selective Q-filters from the ground model which survive as maximal selective Q-filters.
- This implies that every dense subset of \mathbb{Q} is reaped by some $X \in Dense(\mathbb{Q}) \cap V$, that is, $\mathfrak{r}_{\mathbb{Q}} = \omega_1$.

- Start with a model of GCH and let \mathscr{F} be the family of the above lemma.
- Make a CSI of length ω₂ such that every succesor step of the iteration has the form Q_J.
- This raise up the cardinal invariant i.
- Every step of the iteration destroys at most ω₁ maximal selective Q-filters in the family *F*, so in every step of the iteration there are ω₂ maximal selective Q-filters from the ground model which survive as maximal selective Q-filters.
- This implies that every dense subset of \mathbb{Q} is reaped by some $X \in Dense(\mathbb{Q}) \cap V$, that is, $\mathfrak{r}_{\mathbb{Q}} = \omega_1$.

Thank you very much!!

3

Image: A match a ma